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Abstract—In this paper, we present a lightweight, low-level
threading and tasking framework, called Argobots, to support
massive on-node parallelism. Unlike other threading models,
Argobots provides users with efficient threading and tasking
mechanisms, not policies, so that users can develop their own
solutions. To achieve this goal, Argobots supports two kinds of
work units: user-level threads and tasklets. The former have an
associated stack and allow blocking calls, while the latter do
not but provide fast context switching. Argobots also exposes
hardware resources (e.g., cores) as execution streams (ESs) and
provides mapping mechanisms between work units and ESs.
Moreover, Argobots supports lower-level control of scheduling
and stackable scheduling with pluggable strategies. Along with
the design, this paper describes the implementation and opti-
mizations of Argobots. The evaluation results with benchmarks
on many-core machines show that Argobots incurs low overhead
with sustainable and scalable performance and enables users to
develop their own efficient solutions.

I. INTRODUCTION

The number of CPU cores used in high-performance com-
puting (HPC) systems has been increasing steadily. Figure 1
shows that supercomputers in the Top500 list [1] are adopting
more cores per socket (bar) and that the total number of cores
in the first-ranked supercomputer has increased during the past
11 years (line), with the current #1 supercomputer utilizing
more than 3 million cores. Based on this trend, we envision
that exascale systems are likely to comprise hundreds of
millions of arithmetic units. Accordingly, future applications
on such systems are expected to use billions of threads or tasks
to exploit the massive concurrency supported.

Achieving billion-way parallelism requires highly dynamic
computational and data scheduling as well as lightweight
threading and tasking methods. Supporting these with tra-
ditional threading models is likely to be difficult, however,
because of their heavyweight context mechanism. Moreover,
the context switching overhead is noticeable [2]: creating
and joining an OS-level thread involve significant overhead,
especially when the number of threads needed to be created
is larger than the number of physical cores (i.e., oversubscrip-
tion). For instance, when 36 Pthreads on a 36-core machine
(Section IV) create a number of Pthreads and join them, the
average time for creating and joining one Pthread increases
from 245 us (one Pthread per Pthread, 36 Pthreads in total)
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Fig. 1: Distribution of number of cores per socket in all 500
supercomputers (bar) and total number of cores in the #1
supercomputer (line) from the past 11-year Top500 lists.

to 2,645 us (10 Pthreads per Pthread, 360 Pthreads in total),
while the average time for creating and joining one user-
level thread (ULT) stays at around 150 ns even though the
number of ULTs created is increased. The time for context
switching is on average 1.64 ps for Pthreads and 60 ns
for ULTs. Consequently, with conventional threading models,
programmers always must be concerned about the number of
threads to be created; but expressing massive parallelism with
a limited number of threads can be challenging.

Increasingly, dynamically scheduled asynchronous work
units (i.e., tasks) are seen as being beneficial for dynamic
adaptivity by HPC researchers. Two types of work units are
common: user-level threads and tasklets. ULTs have a stack
associated with them, while the tasklets do not. Tasklets allow
for rapid context switching but are not allowed to block.
ULTs allow such blocking and are only slightly slower than
tasklets. Support for both types ensures that a wide variety
of asynchronous models (sometimes called “tasking models™)
can interoperate while even interleaving their execution under
the control of a common runtime system.

Unfortunately, many existing or proposed lightweight
threading models support either ULTSs or tasklets. They try to
provide users with programming interfaces similar to conven-
tional threading models while supporting low-overhead context
switching between work units. We believe that attempting
to meet the requirements of future applications with existing



lightweight threading models is not ideal because their smart
policies (e.g., work-stealing scheduling) sometimes conflict
with the characteristics and demands of applications.

In this paper, we present a lightweight, low-level threading
and tasking framework, called Argobots, to support the mas-
sive parallelism required for applications on exascale systems.
Unlike other lightweight threading models [3], [4], the design
goal of Argobots is to provide users with efficient threading
and tasking mechanisms, not policies, so that users can develop
their own solutions. Argobots defines abstractions for both
ULTs and tasklets and supports them with a robust and lean
implementation. Argobots provides mapping mechanisms be-
tween the work units and each hardware resource (e.g., a core)
called an “execution stream” (ES). Scheduling of these work
units presents another challenge. To enable flexibility in usage
as well as to minimize scheduling costs, Argobots supports
an innovative notion of stackable schedulers with pluggable
queuing strategies. Specifically, by allowing stacking of sched-
ulers associated with each ES, we can use a general scheduler
in most cases but switch to a low-overhead but less-general
scheduler when needed. Along with the design, this paper
describes the implementation and optimizations of Argobots
as a user-level runtime system. The evaluation results with
microbenchmarks and applications on many-core architectures
show that Argobots incurs low overhead with sustainable and
scalable performance and enables users to write their own
efficient solutions.

The major contributions of this paper are as follows.

o The Argobots execution model design offers an extreme
level of flexibility and control to higher level runtimes
and programming models by leveraging state-of-the-art
concepts and optimizations in a common framework. This
flexibility allows users to translate higher-level abstrac-
tions into efficient low-level implementations.

o A lightweight design can be heavy if not implemented ef-
ficiently. We performed an in-depth analysis that involved
investigating every cache miss and TLB miss that occurs
in the critical path. This led to implementation optimiza-
tions and API extensions that achieved unprecedented
performance in the context of lightweight runtimes.

o We evaluate Argobots on a 36-core machine using mi-
crobenchmarks and compare its performance and scala-
bility with those of other lightweight threading libraries,
such as Qthreads [3] and MassiveThreads [4]. This
evaluation shows that Argobots imposes little overhead
and scales better than other libraries while achieving
sustainable performance.

o We conduct a performance study with three applications.
The results show that the Argobots versions perform
better than the original applications because Argobots
enables more efficient implementations thanks to its light-
weight mechanisms.

II. RELATED WORK

ULTs, also called coroutines or fibers, are usually referred
to as lightweight threads with low context-switching overhead.
The ULT has thread semantics similar to the semantics of the
OS-level thread but running in the user space. In addition,
more than one ULT can be mapped to a single OS-level
thread. Hence, ULTs may not be executed concurrently, and

cooperative scheduling may be required in order to execute
multiple ULTs in an interleaved manner. Compared with
conventional threads (e.g., Pthreads), ULTs are more suitable
for expressing massive parallelism and for overlapping compu-
tation and communication (or I/O) because of their lightweight
context mechanism.

To leverage these benefits of ULTs, researchers have pro-
posed various threading models, as well as OS supports such
as Windows fibers [5], [6] or Solaris threads [7]. Converse
threads [8] are designed for the Converse framework [9] as
a threading subsystem and support both ULTs and tasklets,
incorporating a hierarchical scheduling model. Argobots is
highly motivated by the Converse threads, but it delivers more
flexible and deterministic threading and tasking primitives by
allowing users to control every detail of Argobots. Qthreads
[3] provides a large number of ULTs with full-/empty-bit
semantics; a ULT can wait for any word of memory until
it is marked either full or empty. MassiveThreads [4] is a
lightweight thread library focusing on scheduling recursive
task parallelism. Maestro [10] provides lightweight threads
and synchronization operations, but it is designed to be the
target of a high-level language compiler or source-to-source
translator. Nanos++ runtime [11] provides ULTs that are used
to implement task parallelism in OmpSs [12]. GnuPth [13]
supports ULTs on a single kernel-space thread while focusing
on portability. StackThreads [14] provides multithreads only
within a single processor; StackThreads/MP [15] extends
this capability by supporting dynamic thread migration on
shared-memory multiprocessors. Marcel [16] is enhanced with
hierarchical scheduling of ULTs on NUMA machines. On the
other hand, Stackless Python [17] and Protothreads [18] are
more focused on stackless threads, that is, tasklets.

Lightweight threads have also been utilized for special
purposes, especially for hiding I/O or communication la-
tency. Capriccio [19] is a ULT package for high-concurrency
servers, such as the Apache web server; however, it supports
multiple ULTs only in single-threaded applications, not in
a multithreaded environment. StateThreads [20] provides a
threading API for writing Internet applications, such as web
servers or proxy servers, with an event-driven state machine
architecture. Li and Zdancewic [21] combined the lightweight
threading model and the event-driven model to build massively
concurrent network services. MPC [22] exploits ULTs to deal
with communications and synchronizations. TiNy-threads [23]
is specialized to map lightweight software threads to hardware
thread units in the Cyclops64 cellular architecture.

Scheduler activations [24] and dispatchers in K42 [25] are
similar to ESs in that they virtualize hardware resources and
ULTs are mapped to them when executed. However, their goal
is to avoid blocking in a scheduler activation (or dispatcher)
by creating a new scheduler activation and switching to it by
preemption in order to execute a different ULT. They provide
kernel interfaces to ULT libraries for this. On the other hand,
the Argobots ES does not interact with the OS kernel to avoid
blocking. Instead, it relies on cooperative multitasking between
ULTs (i.e., the ULT has to voluntarily yield when it blocks).
Therefore, the ideas presented in [24], [25] are orthogonal and
complementary to our work.

The main difference between Argobots and other ap-
proaches is that Argobots is designed primarily to be an under-



lying threading and tasking runtime for high-level runtimes or
libraries. It provides low-level primitives with which we can
even build other ULT libraries, whereas current ULT libraries
cannot do so or lose important features in the attempt. First,
Argobots exposes two levels of parallelism, ESs and work
units, that can give a better chance to optimize locality and
to deterministically schedule work units. Arguably, explicitly
mapping ESs and work units may present a burden to new
users, but it can enable advanced users to better control the
locality and the scheduling by precisely assigning work units
to specific ESs. In addition, unlike other models, Argobots
seeks to provide efficient mechanisms, not policies, for users
to develop their own solutions. Argobots also supports lower-
level control of scheduling and stackable scheduling frame-
work with pluggable strategies. Since this approach prevents
Argobots from conflicting with upper-layer runtimes, it en-
hances the sustainability and stability of performance. We
believe that all these efforts make Argobots a better fit for
various high-level runtimes or domain-specific libraries.

In Section V we compare Argobots with popular Qthreads
and MassiveThreads in terms of performance and scalabil-
ity because they are among the best-performing lightweight
threading models currently used in the HPC community.
Moreover, these are available as independent libraries that are
not integrated in the programming model runtimes, and their
performance was well studied in previous works [3], [4].

III. DESIGN AND IMPLEMENTATION

This section presents the design and implementation of
Argobots.

A. Execution Model

Figure 2 illustrates the execution model of Argobots. Argo-
bots explicitly supports two levels of parallelism: ESs and
work units. An ES is a sequential instruction stream that
consists of one or more work units. When an ES is bound to a
hardware processing element (PE), it can also be regarded as
a software-equivalent or OS-level thread. ESs are explicitly
created, and each ES is executed independently. ESs have
implicitly managed progress semantics, which guarantees that
one blocked ES cannot block other ESs. A work unit is a
lightweight execution unit, such as a ULT or tasklet, and gets
associated with a specific ES when it is running. There is no
concurrent execution of work units in a single ES, and thus
only one work unit runs in an ES at a certain point. However,
work units in different ESs can be executed concurrently. Each
ES is associated with its own scheduler that is in charge
of scheduling work units according to its scheduling policy.
The scheduler also handles asynchronous events periodically.
Argobots provides some basic schedulers, and users can also
write their own scheduler.

ULTs and tasklets are associated with function calls and
execute to completion. However, they differ in subtle aspects
that make each of them better suited for some programming
motifs. For example, a ULT has its own persistent stack
region, whereas a tasklet borrows the stack of its host ES’s
scheduler. A ULT is an independent execution unit in user
space and provides standard thread semantics at a low context-
switching cost. ULTs are suitable for expressing parallelism in
terms of persistent contexts whose flow of control pauses and
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Fig. 2: Argobots execution model.

resumes based on the flow of data. A common example is
an overdecomposed application that uses blocking receives to
wait for remote data. Unlike OS-level threads, ULTs are not
intended to be preempted. They cooperatively yield control,
for example, when they wait for remote data or just let other
work units make progress. When ULTs run in an ES, their
execution may be interleaved inside an ES because they can
yield control to the scheduler or another ULT. A tasklet is
an indivisible unit of work with dependence only on its input
data, and it typically provides output data upon completion.
Tasklets do not explicitly yield control but run to completion
before returning control to the scheduler that invoked them.

The explicit management of ESs and work units differenti-
ates Argobots from other ULT libraries [3], [4], [10]. Instead
of merely relying on the underlying scheduler of a thread
library, users of Argobots can control which work units can run
concurrently by managing the mapping between ESs and work
units. This low-level control enhances cooperative multitasking
because work units that involve much communication and
need frequent context switch can be mapped together to ESs.
In addition, work units that are compute bound and do not
benefit from cooperative multitasking can run in an ES without
frequent context switching. Moreover, this approach enables
users to easily manage the data locality of work units.

B. Scheduler

The design principle for the scheduler is to provide a
framework for stackable or nested schedulers with pluggable
strategies while exploiting the cooperative, nonpreemptive
activation of work units. Localized scheduling strategies such
as those used in current runtime systems, while efficient
for short execution, are unaware of global strategies and
priorities. Adaptability and dynamic system behavior must be
handled by scheduling strategies that can change over time
or be customized for a particular algorithm or data structure.
Argobots supports plugging in custom strategies so that higher
levels of the software stack can use their special policies while
Argobots handles the low-level scheduling mechanism.

The Argobots scheduling framework also permits stacking
schedulers specific to a programming model or an applica-
tion component. For example, the framework can accept a
scheduler for each module in an application; and based on
dependencies or relative module priorities, the higher-level
scheduler may invoke one of the stacked schedulers. Doing
so activates work units associated with the invoked scheduler



on the managed hardware and yields control back upon
completion. Similarly, stacked schedulers might be a result
of multiple programming models interacting in the context of
Argobots.

Argobots allows each ES to have its own schedulers. To
execute work units, an ES has at least one main scheduler,
denoted by S in Figure 2. A scheduler is associated with one
or more pools where ready ULTs and tasklets are waiting for
their execution. In the figure, for instance, Sy;1 in £.S7 has one
associated local pool, P11, and Spso in ES; has two local
pools, Paso1 and Ppsos. Pools have an access property, for
example private to an ES or shared between ESs. Sharing or
stealing work units among schedulers (or ESs) is done through
shared pools. For example, Pg in the figure is shared between
ES; and ES,, and thus both Sp;q in ES7 and Sy in ESs
can access the pool to push or pop work units. Each ES also
has a special event pool, called Pg, for asynchronous events.
The event pool is for utilizing lightweight notification and is
periodically checked by a scheduler to handle the arrival of
events (e.g., messages from the network).

In Argobots, when a work unit is in a pool that is associated
with a running or stacked scheduler, it is considered ready to
execute. Thus, Argobots does not control dependencies be-
tween work units. The control is done in the application itself
through mechanisms provided by Argobots, such as waiting
for completion and synchronizations (see Section III-C). In
order to ensure a particular affinity of a work unit to some
data, the application simply needs to use the right pool when
pushing the work unit. Thus, the work unit will be executed
on the ES (or a group of ESs) that can pick from this pool.

Stacking schedulers is realized through pushing schedulers
into a pool. In other words, schedulers in a pool are regarded
as schedulable units in Argobots. For example, S; and So
in Ppr11 in Figure 2 are stacked schedulers, which will be
executed by the main scheduler Sp;;. When a higher-level
scheduler pops a scheduler from its pool, the new scheduler
starts its execution (i.e., scheduling). Once it completes the
scheduling, control returns to the scheduler that started the
execution of the completed scheduler. To give control back to
the parent scheduler, a scheduler can also yield.

C. Primitive Operations

Argobots defines primitive operations for work units. Since
tasklets are used for atomic work without blocking, most
operations presented here, except creation, join, and migration,
apply only to ULTs.

Creation. When ULTs or tasklets are created, they are
inserted into a specific pool with the ready state. Thus, they
will be scheduled by the scheduler associated with the target
pool and executed in the ES associated with the scheduler.
If the pool is shared with more than one scheduler and the
schedulers run in different ESs, the work units created may
be scheduled in more than one ES.

Join. ULTs and tasklets can be joined by other ULTs. When
a work unit is joined, it is guaranteed to have terminated.

Yield. When a ULT yields control, the control goes to the
scheduler that was in charge of scheduling in the ES at the
point of yield time. Since Argobots does not adopt preemptive
scheduling, ULTs must cooperatively yield control in order
to enable progress of other work units. The scheduler, which

receives the control from the ULT, schedules the next work
unit according to its scheduling policy.

Yield_to. To reduce context switch overhead in the yield
operation, Argobots provides the yield_to operation for ULTs.
When a ULT calls yield_to, it yields control to a specific ULT
instead of the scheduler. Since yield_to avoids the scheduler
in the flow of control, it can eliminate the overhead of context
switching to the scheduler and scheduling another ULT. This
feature is useful when the user knows the exact ULT that needs
to be executed after the current ULT. Yield_to can be used only
among ULTs associated with the same ES.

Migration. Argobots supports migration of work units
between different pools. Basically, all ULTs, which are created
by the user, can be migrated unless they are terminated. A
running ULT can be migrated when it yields. However, tasklets
can be migrated only if they have not started the execution. The
migration operation can be blocking or nonblocking depending
on the request. And, if a callback function is set, it will be
invoked when the migration happens.

Synchronizations. Mutex, condition variable, future, and
barrier are supported. Only ULTs are expected to use these
operations. Mutex enables mutual exclusion between ULTsS.
When more than one ULT competes for locking the same mu-
tex, only one ULT is guaranteed to lock the mutex. Other ULTs
are blocked and wait until the mutex is unlocked. Condition
variable is a signal/wait synchronization mechanism. A ULT
waits on a condition variable until it is signaled by another
ULT. It is also possible that many ULTs wait on the same
condition variable and a different ULT signals (broadcasts) to
all waiting ULTs to wake them up. Future is a mechanism for
passing a value between ULTs, allowing a ULT to wait for the
value to be set asynchronously by another work unit. Argobots
provides a general form of this mechanism that accompanies a
number of compartments for the value. Each compartment is
set by a contributing work unit, and ULTs waiting on a future
blocks until all the compartments are set. Barrier enables
multiple ULTs to wait until all of them reach the barrier.

D. Implementation

We have implemented Argobots in the C language as a
user-level library and a low-level runtime so that high-level
programming models or domain-specific languages can easily
integrate Argobots into their runtime. An ES is implemented
with Pthread and is bound to a hardware PE, for example, a
CPU core or hardware thread. Argobots considers one ES per
PE because oversubscription of ESs is not recommended.

ULTs are implemented by using user context mechanisms,
such as ucontext, set jmp/longjmp with sigaltstack [26],
or Boost library’s fcontext [27], which provide means to
create a user context and to switch between different user
contexts. The user context includes CPU registers, stack
pointer, and instruction pointer. Our implementation exploits
fcontext by default. When a ULT is created, we create a ULT
context that contains a user context, stack, the information for
the function that the ULT will execute, and its argument. A
stack for each ULT is dynamically allocated, and its size can
be specified by the user. The ULT context also includes a
pointer to the scheduler context in order to yield control to
the scheduler or return to the scheduler upon completion.



Since a tasklet does not need a user context, it is imple-
mented as a simple data structure that contains a function
pointer, argument, and some bookkeeping information such
as an associated pool or ES. As described in Section III-A,
tasklets are executed by using the scheduler’s stack space.

A pool is a container data structure that can hold a set of
work units and provide operations for insertion and deletion.
Argobots defines the interface required to implement a pool,
and our implementation provides a first-in, first-out queue as
a pool implementation. The pool has a property for access
mode; and depending on its access mode, it can be shared
between different ESs or private to a single ES.

A scheduler is implemented similarly to a work unit and,
like it, has its own function (i.e., scheduling function). Since
a scheduler can be regarded as a schedulable unit, it can be
inserted into a pool and be executed as a work unit.

In order to compensate for the waiting time spent on
blocking operations, a ULT that has called a blocking Argobots
operation is context switched. For example, when a ULT tries
to lock a mutex, if the mutex has already been locked by
another ULT, the caller ULT has to wait until the mutex
is unlocked. Instead of waiting, the caller ULT is context
switched to the scheduler. Similarly, when a ULT tries to join
another ULT, the caller ULT implicitly yields control if the
target ULT is not joinable at the call time.

IV. PERFORMANCE ANALYSIS AND OPTIMIZATIONS

This section investigates subtle implementation details that
can greatly affect the latency of primitive operations for
ULTs, such as creation, join, and destruction. We do not
include the analysis and optimizations for tasklets here because
their overhead comes mainly from memory allocation and
deallocation and it is mostly mitigated by using memory pools
(Section IV-B). Instead, the performance of tasklets will be
discussed in Section V-A.

We used a 36-core (72 hardware threads) machine, which
has two Intel Xeon E5-2699 v3 (2.30 GHz) CPUs and 128 GB
memory and runs Red Hat Linux (kernel 3.10.0-327.el7.x86_-
64) 64-bit, in this section and Section V. We used gcc 4.8.5 for
compilation and PAPI [28] for collecting necessary hardware
counter values.

A. Benchmark Description and Baseline Performance

For simplification, the analysis focuses on spawning and
joining ULTs on a single ES. That is, we create a large number
of ULTs on one ES in a bulk synchronous fashion, join them
by the main ULT, and then destroy them. Each ULT is created
with 16 KB of stack space. Since single-threaded performance
improvements are often translated into improved multithreaded
execution, we expect multi-ES environments to benefit from
the optimizations introduced in this section. In the following,
we report latency results in CPU cycles and show memory-
related hardware counters where needed.

Figure 3 shows the performance breakdown of our baseline
implementation according to the number of ULTs that are
created in the benchmark. It illustrates the average latency
(arithmetic mean) per ULT in CPU cycles from 1,000 exe-
cutions of each case. We note that the standard deviation of
latencies measured in the experiment is less than 5%. Create,
Join, and Free in the figure represent the time spent for
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creating, executing and joining, and destroying work units,
respectively. For example, forking and joining 64 ULTs take
2,443 cycles (1.064 us) for each ULT, where 1,837, 212, and
394 cycles are spent for Create, Join, and Free, respectively.

B. Using Memory Pools

Work units in Argobots are meant for dynamic fine-grained
concurrency. Thus, memory allocation and deallocation take
place at high frequencies. In each case of Figure 3, about 75%
of the time is used for creation, and about 15% of the latency
is used for destruction. A further analysis of Create and Free
reveals that memory allocation and deallocation contribute to
93% and 84% of each latency, respectively. These significant
overheads of memory management come from the fact that the
baseline implementation relies on malloc and free functions
provided in glibc to handle dynamic memory allocations.

We developed a custom memory allocator that reduces sys-
tem calls and thread synchronization overheads. This allocator
maintains a memory pool that grows in size with the number
of spawned work units. After a work unit terminates, its
memory resources are added to the pool or returned to the
system if the pool has reached a certain threshold. Since the
scalability of a dynamic memory allocator is limited mostly
by synchronizations on the shared heap [29], each ES keeps
a private memory pool for allocating work units in order to
reduce the number of accesses to the global heap. Basically, if
creation and destruction of a work unit occur in the same ES,
no synchronization is involved. If the work unit is freed in a
different ES, however, the memory used for the work unit is
returned to the ES that has allocated it, in order to avoid the
heap-blowup problem [30].

We experimented with the new memory management sys-
tem and measured the latency of the Create, Join, and Free
operations. The results are shown in Figure 4 as MemPool. We
observe a substantial benefit of the memory pool, especially
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for Create and Free, compared with Baseline that uses the
glibc allocation system.

C. Using Huge Pages

Looking into hardware counters after incorporating the
custom memory allocator, we noticed that TLB misses are not
negligible, especially for a large number of ULTs, as depicted
in Figure 5. When dealing with more than 2'2 ULTs, each
ULT experiences one or more TLB misses for all Create,
Join, and Free operations. Given the expensive costs of page
walks and eventual memory accesses to the page table, we
naturally sought a way to reduce them by using larger page
sizes.

For this purpose, we allocated 2 MB huge pages, instead of
the normal 4 KB pages, by using mmap until the system ran out
of huge pages for explicit allocation. Then, we reverted to the
transparent huge page (THP) support [31]. We modified the
memory allocator in Section IV-B to exploit huge pages. We
report the results in Figure 5. HugePages in the figure was
obtained by using huge pages with memory pools. It indicates
that the TLB misses go down to almost zero with huge pages,
which is translated into up to 39%, 33%, and 57% reduced cost
for the creation, join, and destruction of a ULT in Figure 4
(see HugePages), respectively.

D. Data Structure Organization

When building a new structure that contains several fields,
programmers often organize them following a semantic ap-
proach where fields close to each other have close semantics.
In the context of ULTs, the fields of the corresponding data
structure may be grouped according to the functionality (e.g.,
identification, scheduling, migration). Unfortunately, such or-
ganization does not always perform well with the pattern
and frequency of accessing those fields. We investigated an
alternative organization that clusters together fields that con-
tribute to the critical path during scheduling. The creation and
destruction of a ULT are not sensitive to the organization of

Join Latency LLC Misses
400 T T 1 T L T T 6
. Jana Baseline —+—
@ 350 I- / LasiCtxSkip —— 71 5
° | SchedBypass a
& 300 / JoinMany 2
g + X 14 5
S 250 / / y
> | | 43 8
8 200 f++M+ * ‘l g
> N | 42 =
g 150 | J o
£ S
T 100 persepnessesososed /
50 i ! ! ! . - . . . L 0
26 08 910 512 514 516 518,56 o8 510 512 514 516 ,18

Number of ULTs
Fig. 7: Effects of the Join optimizations.

the fields. The opposite statement holds, however, for other
scheduling operations such as Join.

Creating a ULT accompanies allocation of an internal data
structure that keeps the necessary information for scheduling
properly the ULT. This structure fits in three cache lines.
During our investigation, we observed that not all fields
are touched along the scheduling critical path and that the
frequently accessed data can be clustered and fit into two
cache lines. Thus, we conjecture that in a performance-critical
environment, the data should be organized in a cache-friendly
manner by reducing the number of cache lines accessed on the
critical path and arranging them in a way that favors spatial
locality. Figure 6 shows the consequence of the performance-
oriented data layout in the benchmark in terms of reduced
cache misses and overall performance. The results indicate
that the Join latency has been reduced by up to 7%, which
corresponds to the reduction in last-level cache misses.

E. Optimizing the Join Operation

Not saving the context of terminating ULT. Context
switching of ULTs consists of two steps: saving the context
of the current ULT, which wants to suspend its execution, and
restoring the context of the next ULT, which needs to resume
its execution. These two steps are usually necessary in order
to switch two ULTs; but the first step, saving the context, can
be omitted if the ULT terminates, because its context will no
longer be used. For this case, we perform only the second part
of context switching to execute the next ULT. LastCtxSkip
in Figure 7 illustrates the effect of this optimization on the
Join operation over Baseline (i.e., Performance in Figure 6).
Since ULTs terminate immediately after they get started in the
benchmark, this optimization can reduce on average 100 cycles
(i.e., 45%) of the Join latency from Baseline.

Bypassing the scheduler. Blocking operations in Argobots
often involve context switching to the scheduler in order to
allow other work units to get scheduled. For Join, since the
caller cannot progress beyond the Join synchronization point
until the ULT being joined terminates, it need not context
switch to the scheduler. Instead, the caller can be blocked
and directly context switched to the next ULT to be joined.
When the joinee ULT is completed, the control is switched
back to the joiner ULT. That is, the scheduler is bypassed in
Join. Although this idea is similar to that presented in [32],
the main difference between two approaches is that the target
of context switching in our optimizations is determined by
the user, not the library or kernel. We note that the Argobots
runtime does not make a decision for the next ULT.
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SchedBypass in Figure 7 shows how this optimization
outperforms LastCtxSkip. In LastCtxSkip, the joiner ULT
jumps to the scheduler, and the scheduler executes all ULTs
and switches back to the joiner ULT. The optimized version
removes context switches from and to the scheduler. In addi-
tion, since the joiner ULT can check the state of the joinee
ULT right after it is terminated, its data structure is accessed
only once by the joiner ULT while it is touched twice in the
LastCtxSkip version by the scheduler and the joiner ULT. The
effect of this optimization can be seen in the lower miss rate of
the last-level cache in Figure 7. This approach does, however,
have a limitation: it allows direct context switching to occur
only within the same ES, because the yield_to operation can
be applied only to ULTs in the same ES (Section III-C).

Join_many. With the previous Join optimization, 2 x N
context switches are needed in order to join N ULTs, because
joining one ULT contains two context switches. To further
reduce the number of context switches when joining multiple
ULTs at the same time, we devised the join_many operation.
This operation takes a list of ULTs to join and enables each
ULT in the list to check the state of the next ULT and to
context switch to the next one if it has not finished. Since
the join_many operation does not return to the caller until
all ULTs in the list terminate and each ULT does only one
context switch to the next one, this operation reduces the
number of context switches from 2 x N to NV + 1 and also
decreases IV Join function calls to a single join_many call. The
performance effect of the join_many operation is illustrated
in Figure 7 as JoinMany. It reduces the Join latency by an
average of 19 cycles from that of SchedBypass.

FE. Other Optimizations

This subsection describes two optimizations that can be
selectively applied to applications.

Using a private pool. All experiments so far used a shared
pool for the scheduler even though only one ES was used. If
there is no sharing between ESs or only one ES is created, the
pool used by the scheduler can be created as a private one,
which is intended for only sequential access and thus does not
use any mutex or atomic instructions in the implementation.
PrivatePool in Figure 8 shows the latency of each operation
when using a private pool, while SharedPool is the case when
a shared pool is used. All previous optimizations are applied
to both cases. Since Create and Join operations include
pushing a ULT to the pool and popping a ULT from the pool
respectively, their latency is improved with the private pool.
On the other hand, the Free operation is not affected by the
private pool because it does not involve any pool manipulation.

Create Join Free

Baséliné T
Optimized ——

W+—W

oK f
/ e
% oo
2 SRR *
% 6
5300
20 X

B e

Latency per ULT (cycles)

1 L L L L L J L L L L L L J L L L L L L
10 26 28 210 212214 216 218 28 28 210 212 214 216 218 26 28 210 212 214 216 218
Number of ULTs
Fig. 9: Latency comparison between the baseline implemen-

tation and the fully optimized implementation.

Disabling features. Often not all features provided by a
library are used in the application, but all of them have to
be included in the applications unless the library supports
disabling some features. The problem is that unused features
may affect the application’s performance if their related code
(e.g., branches) is part of the performance-critical path al-
though it does nothing useful. To address this issue, Argobots
provides configuration options to disable some features, for
example, migration or stackable scheduler. We observe that in
the current implementation disabling migration could reduce
around 20 cycles in the Join operation latency, which is shown
as NoMigration in Figure 8. We note that disabling other
features was insignificant, and thus we do not show their effect
here.

G. Putting It All Together

Figure 9 shows the improved latencies of Create, Join,
and Free operations with all the optimizations introduced
in the preceding subsections. In the figure, Baseline means
the latency of each operation in the baseline implementation,
which is also shown in Figure 3, and Optimized represents
the results of fully optimized implementation. In summary,
the latencies of Create, Join, and Free were significantly
reduced by our optimizations. For instance, the latency of each
operation per ULT for 2% ULTs was decreased from 1,837
cycles to 42 cycles for Create, from 212 cycles to 34 cycles
for Join, and from 394 cycles to 23 cycles for Free. For 2!8
ULTs, the numbers were changed from 3,921 cycles to 446
cycles for Create, from 584 cycles to 159 cycles for Join,
and from 733 cycles to 54 cycles for Free. From analyses
and various optimizations, we notice that using memory pools
is the most effective for Create and Free operations while all
optimization methods introduced in the preceding subsections
collectively influence the performance of the Join operation.

Because of the nature of the benchmark (i.e., it is designed
to exercise bulk synchronous ULT operations and each ULT
does nothing in its function), cases with a small number of
ULTs can be considered as best scenarios where data structures
and stacks fit in the last-level cache. Those results are difficult
to tie to real applications, however, since they might not
exhibit such high degrees of cache reuse. We consider the
large number of ULT runs more insightful because there is
almost no cache reuse, since the working sets do not fit in the
last-level cache and hence reflect a worst-case scenario.



V. EVALUATION

This section shows performance and scalability results of
the Argobots implementation with microbenchmarks and ap-
plications using the same environment described in Section IV.

A. Microbenchmarks

We compared the performance and scalability of Argo-
bots, which is optimized with all techniques introduced in
Section IV, with those of two ULT libraries, Qthreads 1.10
[3] and MassiveThreads 0.95 [4]. Since Qthreads and Mas-
siveThreads are already optimized and it is not simple to apply
our optimization techniques to them because of the design
differences, we used them as they are without modifying
their implementation. All libraries were compiled with -O3
-ftls-model=initial-exec flags. Since Pthread is not suitable for
oversubscription and frequent context switching because of its
high overhead, we did not include Pthread in the evaluation.

Create/join time. We compared the time taken to create
and join a ULT or a tasklet with various numbers of ESs. For
Qthreads and MassiveThreads, the number of workers was set
to the same as that of ESs; and one worker in Qthreads was
mapped to one shepherd. We created one ULT for each ES, and
that ULT repeated creating and joining 256 ULTs or tasklets in
a private pool of its associated ES 1,000 times. We performed
the same pattern of creating and joining ULTs for Qthreads
and MassiveThreads although they do not provide the same
concept of pool or ES.

Figure 10 illustrates the average create and join times
per ULT for each lightweight thread library from 10 runs
of the benchmark. The join operation here includes both
joining a ULT and destroying it. Since MassiveThreads by
default utilizes the work-first scheduling policy [33] (i.e.,
pushes the creator to the scheduling queue and executes the
spawned thread first), while Qthreads and Argobots adopt
the help-first principle [34] (i.e., create all threads first), we
include results for both the work-first and help-first versions of
MassiveThreads, denoted by MassiveThreads (W) and Mas-
siveThreads (H) in Figure 10, respectively. For Argobots,
ULT and tasklet results are depicted as Argobots (ULT) and
Argobots (Tasklet), respectively.

The results in the figure show that Argobots achieves better
performance than either Qthreads or MassiveThreads does.
Ideally, if the ULT runtime is perfectly scalable, the time
should be the same regardless of the number of ESs. Usually,
however, that is not the case because hardware resources,
such as caches, memory, or physical CPU cores, are shared
between ESs and synchronizations might exist between ESs to
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Fig. 10: Create and join time.

protect shared data. Argobots shows similar ULT create/join
overhead irrespective of the number of ESs, whereas Qthreads
and MassiveThreads do not. The big increase in the time at 40
is because two hardware threads share a single physical core in
the target CPU. The better scalability of Argobots comes from
the design of adopting a scheduler and scheduling pools for
each ES and its synchronization-free implementation. As long
as schedulers or ULTs in different ESs do not share a pool
or data, there will be almost zero synchronization (even no
atomic instructions) between ESs. Although MassiveThreads
(W) shows overhead similar to that of Argobots with a small
number of ESs (up to eight), its ULT create/join time increases
or fluctuates with a large number of ESs because it uses
a shared queue with a work-stealing policy. Qthreads and
MassiveThreads (H) do not achieve scalable performance;
and with a large number of ESs (e.g., 72 ESs), their create/join
is more than 20 times slower than that of Argobots.

As described in Section III-A, Argobots also provides a
more lightweight work unit, tasklet, along with a ULT. Argo-
bots (Tasklet) in Figure 10 shows the time taken to create and
join an Argobots tasklet. Since the tasklet’s context is more
lightweight than that of ULT and it does not involve context
switching (i.e., it is directly executed by the ES’s scheduler),
it has less overhead than does a ULT in both creation and
execution. Thus, Argobots (Tasklet) shows the smallest cycles
among the cases. In addition, the tasklet achieves very scalable
performance, as does the Argobots ULT, because it also takes
the same advantage of the Argobots design.

Create/join time tolerance. We also measure the minimum,
maximum, and average time for each ULT on each ES to create
and join another ULT. Figure 11 shows results for Qthreads,
MassiveThreads with the work-first policy, and the Argobots
ULT. The results indicate that only Argobots achieves very
sustainable performance, which means that ESs do not affect
each other’s execution if they do not interact. However, work-
ers in Qthreads and MassiveThreads interfere with each other,
and thus the create/join time per ULT varies significantly when
multiple workers are running even though they do not interact
at all in the user code. These results imply that the design of
Argobots can enable users to build their higher-level runtime
without worrying about the conflict with underlying threading
runtime from the perspective of scheduling.

Yield time. The yield time contributes to the ULT cre-
ate/join time as well. When the ULT that has created a new
ULT tries to join the new ULT, it needs to yield control
to the scheduler in order to execute the new ULT. The
worst performance of Qthreads in Figure 10 is due mainly
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to its high yield overhead. The yield latency is also critical
for applications that require frequent context switches. We
measured the yield overhead for each ULT library according
to the number of ESs. Figure 12 depicts the results. Since
Argobots supports the yield_to operation as well as yield
(Section III-C), the figure shows the overhead of both yield and
yield_to. For both operations, Argobots demonstrates better
scalability than Qthreads and MassiveThreads do, because of
its low synchronization overhead. Figure 12 also shows that,
as expected, yield_to incurs almost half the overhead of yield
because yield_to does not pass through the scheduler.

B. Applications

We here demonstrate how applications can take advantage
of Argobots features and mechanisms.

1) XSBench: XSBench [35] is a proxy application that
models the calculation of macroscopic neutron cross-sections
of a Monte Carlo particle transport simulation code, OpenMC
[36]. The kernel that XSBench simulates is the most computa-
tionally intensive part in OpenMC and takes around 85% of the
total runtime of OpenMC, according to its documentation. It
is written in the C language and is parallelized with OpenMP.

We port the main simulation part of XSBench, namely, the
actual cross-section lookup loop, to Argobots. Basically, in our
implementation the iterations of the lookup loop are evenly
divided into ESs. One ULT per ES is created, and it creates
as many tasklets as the number of lookups that are assigned
to the ES. Each tasklet performs one cross-section lookup.
Since we notice that the cross-section lookup code suffers
from cache misses due to its irregular memory accesses, our
Argobots version takes account of data locality instead of
simply executing the loop iterations as done in the original
OpenMP code. We implement a custom scheduler, using the
Argobots scheduler framework (Section III-B), that executes
tasklets according to the order of energy indices, which are
random values but critical to the memory access pattern. In

other words, the scheduler sorts tasklets in ascending order of
energy indices and executes them. This approach can achieve
better performance because it can improve the spatial locality
of accessed data in the cache. The scheduling begins after
creating a certain number (here, 8,192) of tasklets instead of
creating all tasklets, because holding and sorting too many
tasklets can lead to significant overhead in the memory usage
and thus impact the performance. To overcome the load
imbalance between ESs, the scheduler adopts work-stealing
when its main pool is empty.

We also implemented XSBench using Qthreads and Mas-
siveThreads. However, since they do not provide the flexibility
of writing a user-defined scheduler as Argobots does, we
sort energy indices before creating ULTs (note that Qthreads
and MassiveThreads do not support tasklets) and create ULTs
according to the energy indices sorted. Then, we rely on their
scheduler for the execution. We did not modify the OpenMP
code because mimicking the behavior of the Argobots version
with OpenMP is not simple.

Figure 13a shows performance results of our XSBench
implementations in Argobots, MassiveThreads with the work-
first policy, and Qthreads, along with the OpenMP result.
The baseline XSBench used is the version 13 dated May
2014; and we used the “large” input size having the default
configuration of 355 nuclides, 11,303 grid points per nuclide,
and 15 million lookups. Each version was run five times;
the figure shows the average result. The speedups in the
graph are obtained by comparing execution times with that
of the sequential code without OpenMP pragmas. Execu-
tion times with a single ES (OpenMP thread or worker)
are 47.67 (Argobots), 47.67 (MassiveThreads (W)), 61.10
(Qthreads), 51.76 (OpenMP), and 50.51 (sequential) sec-
onds. The results in the figure show that all implementations
scale well but that Argobots achieves the best scalability.
These results indicate that the scheduling of work units in the



Argobots version is effective in handling this kind of work-
load and incurs little overhead. Although MassiveThreads
(W) shows better performance on a smaller number of ESs
because of its aggressive work-stealing policy, it suffers from
contention and overhead on a large number of ESs.

2) LeanMD: LeanMD is a molecular dynamics simulation
benchmark written in Charm++ [37]. It simulates the behavior
of uncharged atoms using the Lennard-Jones potential, and it
has been used in many studies [38], [39], [40].

To examine whether Argobots can natively support a mature
parallel application, we implemented LeanMD in Argobots
and compared its performance with that of the highly op-
timized original LeanMD code written in Charm++. In our
Argobots implementation of LeanMD, each ES is equipped
with a custom work-stealing scheduler that first executes work
units from its local pool and then steals work units from pools
associated with other ESs when the local pool is empty. We
create as many pools as there are ESs, and all these pools can
be accessed by any ES (i.e., these are shared pools). However,
since the scheduler on each ES always accesses its local
pool first, our implementation naturally avoids the contention
on pools while resolving the load imbalance between ESs.
A cell is managed by one ULT, called the cell ULT; and
the interaction between two cells is managed by a tasklet,
called the interaction task. The cell ULT is responsible for
creating the interaction tasks with half its neighbors. Since
the interaction between two cells is symmetric, the other half
of the interaction tasks will be created by neighbors of the
cell. After spawning the interaction tasks, the cell ULT waits
for the completion of all the interaction tasks in which the
corresponding cell is involved. The waiting mechanism is
implemented by using futures: a cell ULT waits for a future
that has as many compartments as there are neighbors of
the cell, and an interaction task signals and contributes to
the futures associated with both the cells that it manages.
When a future is ready, a callback function reduces all the
forces in the future’s compartments, and the corresponding cell
ULT is awakened. The cell ULT then updates the kinematic
parameters of the atoms contained in the cell and signals
all the neighbors of the cell (using future mechanism) once
the updates are completed. When the cell ULT receives the
notification from all its neighbors about the completion of
updates, it proceeds with the next iteration.

Figure 13b compares the performance of Argobots and
Charm++ (using Converse threads) for LeanMD. In this figure,
we vary the number of ESs from 1 to 72 along the x-axis.
The y-axis shows the total execution time for 20 steps of
LeanMD simulation for a 3D cell array of dimensions 7x7 X 7.
In our simulation, we used 1-away XYZ configuration and
1,000 atoms per cell. Thus, the entire simulation space has a
total of 343,000 atoms. Execution times shown along y-axis
were obtained by averaging across 10 runs. The results show
that Argobots achieves better absolute performance than does
Charm++ in all the cases. For example, when we used all the
hardware threads available on the machine (i.e., 72), Argobots
takes a total of 9.6 seconds compared with 11.7 seconds taken
by Charm++. With regard to speedup, Argobots performs
slightly better than Charm++: 30.9 vs 30.7 for 72 ESs, normal-
ized with respect to the one ES case for each implementation.
The better performance of Argobots compared with Charm++

demonstrates the efficiency of Argobots even for fine-grained
applications. The results in this subsection further demonstrate
that the scheduling and synchronization mechanisms provided
by Argobots are sufficient for handling complex and mature
parallel applications. We note that the goal of this comparison
is to show that Argobots has lightweight but fully fledged
mechanisms that can be used to implement more complicated
algorithms, not to advocate that Argobots is better than other
programming model runtimes.

3) 2D Poisson Solver: We adapted a 2D Poisson solver
implemented in MPI [41] to use Pthreads and Argobots. This
application uses the Jacobi iterative method to solve the linear
system. The N x N region is divided into strips between
the MPI processes. Cells that lie on the boundary of a strip
must communicate with neighboring processes in order to
receive the appropriate data to perform the local computation.
Thus, each MPI process sends and receives data twice in each
iteration because of the data layout.

Our adaption of the application uses MPI for interprocess
communication and different threading models for shared-
memory parallelism. In the implementation with Pthreads,
only the master thread takes charge of the MPI communi-
cation, and all threads including the master thread participate
in the computation. The rows in the strip are equally divided
into all threads. All communication done by the master thread
is nonblocking in order to take advantage of any overlap in
communication and computation.

The basic parallelization approach in the Argobots version
is similar to that of the Pthreads version. That is, each ULT is
spawned on each ES and executes part of the computation, but
only one ULT handles all MPI communication. However, our
Argobots version further exploits lightweight threading and
tasking of Argobots by creating a ULT for communication and
tasklets for computation. The communication ULT initiates
nonblocking send and receive operations and then yields
control after testing whether the communication operations are
not complete. When it is scheduled later, it tests the posted
operations and decides whether to yield again or to proceed.
Once the receive calls are done, the row calculation for the
associated data is carried out by the same ULT to utilize the
data locality. While the communication ULT is dedicated to a
specific ES, computation tasklets are shared between ESs to
avoid the potential load imbalance that may be caused by the
communication ULT.

Figure 13c shows the results of the application for N =
16384 on the Blues cluster at Argonne National Laboratory.
Each compute node on Blues has two Intel Xeon E5-2670
CPUs (i.e., 16 cores) with 64 GB memory and uses CentOS
6.7 (kernel 2.6.32-573.7.1.e16.x86_64). All nodes share a
GPFS file system and are connected with the QLogic QDR
InfiniBand network; gcc 5.2.0 and MPICH 3.2 are used
for compilation and MPI communication, respectively. In the
figure, MPI+Pthreads and MPI+Argobots denote the total
execution time of our implementations with Pthreads and
Argobots, respectively. The number of nodes is varied from
2 to 64, and 16 ESs (or Pthreads) are created on each node.
The results in the figure indicate that MPl+Argobots achieves
better performance than does MPI+Pthreads, because using
ULT and its lightweight context switching enables commu-
nication and computation to be more overlapped. In addition,



our parallelization with tasklets facilitates work sharing among
ESs while keeping the low overhead of task management.

VI. CONCLUSIONS AND FUTURE WORK

Argobots is a lightweight, low-level threading and tasking
framework to efficiently exploit the massive on-node paral-
lelism provided by current and future many-core architectures.
Although many lightweight threading models have been pro-
posed, their focus has been on how to build the best threading
runtime system rather than how to be a threading and tasking
building block for higher-level runtimes. The Argobots ap-
proach is to serve as an enabling technology providing efficient
mechanisms, not a policy maker, so that users can implement
and optimize their runtime on top of Argobots. With this goal
in mind, this paper presents the design and implementation of
Argobots as well as a performance analysis and optimizations
of Argobots. Evaluation results with microbenchmarks and
applications indicate that Argobots incurs low overhead in its
operations and achieves sustainable and scalable performance
while providing diverse and configurable mechanisms.

Future work on Argobots will include programming model
study, memory hierarchy optimizations, and resource-aware
threading. First, we will implement diverse programming
models over Argobots and study the pros and cons of each
approach as well as the application performance. Second,
we plan to investigate Argobots optimizations regarding deep
memory hierarchy and long latency from unconventional mem-
ory such as NVRAM. Third, since the number of cores and
the number of hardware threads per core are increasing in
HPC platforms, hardware resources per ES and ULT, such as
memory or power, will be decreasing; thus, we plan to devise
techniques to address this challenge in the context of Argobots.
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